Definition:Multiplication of Polynomials
Jump to navigation
Jump to search
Definition
Let $\struct {R, +, \circ}$ be a ring.
Let $\struct {S, +, \circ}$ be a subring of $R$.
Let $x \in R$.
Let:
- $\displaystyle f = \sum_{j \mathop = 0}^n a_j x^j$
- $\displaystyle g = \sum_{k \mathop = 0}^n b_k x^k$
be polynomials in $x$ over $S$ such that $a_n \ne 0$ and $b_m \ne 0$.
The product of $f$ and $g$ is defined as:
- $\displaystyle f g := \sum_{l \mathop = 0}^{m + n} c_l x^l$
where:
- $\displaystyle \forall l \in \set {0, 1, \ldots, m + n}: c_l = \sum_{\substack {j \mathop + k \mathop = l \\ j, k \mathop \in \Z}} a_j b_k$
Polynomial Forms
Let $\displaystyle f = \sum_{k \mathop \in Z} a_k \mathbf X^k$, $\displaystyle g = \sum_{k \mathop \in Z} b_k \mathbf X^k$ be polynomial forms in the indeterminates $\left\{{X_j: j \in J}\right\}$ over $R$.
The product of $f$ and $g$ is defined as:
- $\displaystyle f \circ g := \sum_{k \mathop \in Z} c_k \mathbf X^k$
where:
- $\displaystyle c_k = \sum_{\substack{p + q \mathop = k \\ p, q \mathop \in Z}} a_p b_q$
Polynomials as Sequences
Let:
- $f = \sequence {a_k} = \tuple {a_0, a_1, a_2, \ldots}$
and:
- $g = \sequence {b_k} = \tuple {b_0, b_1, b_2, \ldots}$
be polynomials over a field $F$.
Then the operation of (polynomial) multiplication is defined as:
- $f g := \tuple {c_0, c_1, c_2, \ldots}$
where $\displaystyle c_i = \sum_{j \mathop + k \mathop = i} a_j b_k$
Also see
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 64$. Polynomial rings over an integral domain: Remarks $\text{(b)}$