Definition:Multiplication/Natural Numbers/Addition

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\N$ be the natural numbers.

Let $+$ denote addition.


The binary operation $\times$ is recursively defined on $\N$ as follows:

$\forall m, n \in \N: \begin {cases} m \times 0 & = 0 \\ m \times \paren {n + 1} & = m \times n + m \end {cases}$

This operation is called multiplication.


Equivalently, multiplication can be defined as:

$\forall m, n \in \N: m \times n := \mathop {+^n} m$

where $\mathop {+^n} m$ denotes the $n$th power of $m$ under $+$.


Examples

Example: $2 \times 3$

$2 \times 3 = 6$

can be expressed as:

$2 + 2 + 2$

or:

$3 + 3$


Sources