Definition:Normal Operator
Jump to navigation
Jump to search
Definition
Let $\HH$ be a Hilbert space.
Let $\mathbf T: \HH \to \HH$ be a bounded linear operator.
Then $\mathbf T$ is said to be normal if and only if:
- $\mathbf T^* \mathbf T = \mathbf T \mathbf T^*$
where $\mathbf T^*$ denotes the adjoint of $\mathbf T$.
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {II}.2.11 \ \text {(b)}$