Definition:Normal Subgroup/Also known as

From ProofWiki
Jump to navigation Jump to search

Definition

It is usual to describe a normal subgroup of $G$ as normal in $G$.


Some sources refer to a normal subgroup as an invariant subgroup or a self-conjugate subgroup.

This arises from Definition 6:

$\forall g \in G: \paren {n \in N \iff g \circ n \circ g^{-1} \in N}$
$\forall g \in G: \paren {n \in N \iff g^{-1} \circ n \circ g \in N}$


which is another way of stating that $N$ is normal if and only if $N$ stays the same under all inner automorphisms of $G$.

See Inner Automorphism Maps Subgroup to Itself iff Normal.


Some sources use distinguished subgroup.


Sources