Definition:Open Ball/Real Analysis

From ProofWiki
Jump to navigation Jump to search

Definition

Let $n \ge 1$ be a natural number.

Let $\R^n$ denote the real Euclidean space of dimension $n$.

Let $\norm {\, \cdot \,}$ denote the Euclidean norm.

Let $a \in \R^n$.

Let $\epsilon \in \R_{>0}$ be a strictly positive real number.


The open (Euclidean) ball of center $a$ and radius $\epsilon$ is the subset:

$\map {B_\epsilon} a = \set {x \in \R^n : \norm {x - a} < \epsilon}$


Also see