Definition:Orthonormal Subset
(Redirected from Definition:Orthonormal (Linear Algebra))
Jump to navigation
Jump to search
Definition
Let $\struct {V, \innerprod \cdot \cdot}$ be an inner product space.
Let $S \subseteq V$ be a subset of $V$.
Then $S$ is an orthonormal subset (of $V$) if and only if:
- $(1): \quad \forall u \in S: \norm u = 1$
where $\norm {\, \cdot \,}$ is the inner product norm.
- $(2): \quad S$ is an orthogonal set:
- $\forall u, v \in S: u \ne v \implies \innerprod u v = 0$
Examples
The $L^2$ Space $L^2_\C \closedint 0 {2 \pi}$
Let $L^2_\C \closedint 0 {2 \pi}$ be the complex $L^2$ space over the closed interval $\closedint 0 {2 \pi}$.
Let $\innerprod \cdot \cdot$ be the $L^2$ inner product.
For $n \in \Z$, let $e_n: \closedint 0 {2 \pi} \to \C$ be defined by:
- $\map {e_n} t = \paren{ 2 \pi }^{-1/2} \map \exp {i n t}$
Then $\set{ e_n : n \in \Z}$ is an orthonormal subset of $L^2_\C \closedint 0 {2 \pi}$.
Also see
- Results about orthonormal subsets can be found here.
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): $\text{I}$ Hilbert Spaces: $\S 4.$ Orthonormal Sets of Vectors and Bases: Definition $4.1$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): orthonormal
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): orthonormal
- 2018: John M. Lee: Introduction to Riemannian Manifolds (2nd ed.) ... (previous) ... (next): $\S 2$: Riemannian Metrics. Definitions
- 2020: James C. Robinson: Introduction to Functional Analysis ... (previous) ... (next) $9.2$: Orthonormal Sets