Definition:Orthonormal Subset

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {V, \innerprod \cdot \cdot}$ be an inner product space.

Let $S \subseteq V$ be a subset of $V$.


Then $S$ is an orthonormal subset (of $V$) if and only if:

$(1): \quad \forall u \in S: \norm u = 1$

where $\norm {\, \cdot \,}$ is the inner product norm.

$(2): \quad S$ is an orthogonal set:
$\forall u, v \in S: u \ne v \implies \innerprod u v = 0$


Examples

The $L^2$ Space $L^2_\C \closedint 0 {2 \pi}$

Let $L^2_\C \closedint 0 {2 \pi}$ be the complex $L^2$ space over the closed interval $\closedint 0 {2 \pi}$.

Let $\innerprod \cdot \cdot$ be the $L^2$ inner product.

For $n \in \Z$, let $e_n: \closedint 0 {2 \pi} \to \C$ be defined by:

$\map {e_n} t = \paren{ 2 \pi }^{-1/2} \map \exp {i n t}$


Then $\set{ e_n : n \in \Z}$ is an orthonormal subset of $L^2_\C \closedint 0 {2 \pi}$.


Also see


Sources