Definition:Parameter of Probability Distribution

From ProofWiki
Jump to navigation Jump to search

This page is about parameter of probability distribution. For other uses, see parameter.

Definition

Let $\PP$ be a probability distribution of a particular type.

A parameter of $\PP$ is a constant that determines the specific properties of $\PP$.


Examples

Normal Distribution

Let $X$ be a continuous random variable with a normal distribution:

$X \sim \Gaussian \mu {\sigma^2}$


The expectation $\mu$ and the variance $\sigma^2$ are the parameters of $\Gaussian \mu {\sigma^2}$.


Poisson Distribution

Let $X$ be a discrete random variable with a Poisson distribution:

$X \sim \Poisson \lambda$


Then $\lambda$ is the parameter of $\Poisson \lambda$.


Binomial Distribution

Let $X$ be a discrete random variable with a binomial distribution:

$X \sim \Binomial n p$


Then $n$ and $p$ are the parameters of $\Binomial n p$.


Also see

  • Results about parameters of probability distributions can be found here.


Sources