Definition:Parameter of Probability Distribution
Jump to navigation
Jump to search
This page is about parameter of probability distribution. For other uses, see parameter.
Definition
Let $\PP$ be a probability distribution of a particular type.
A parameter of $\PP$ is a constant that determines the specific properties of $\PP$.
Examples
Normal Distribution
Let $X$ be a continuous random variable with a normal distribution:
- $X \sim \Gaussian \mu {\sigma^2}$
The expectation $\mu$ and the variance $\sigma^2$ are the parameters of $\Gaussian \mu {\sigma^2}$.
Poisson Distribution
Let $X$ be a discrete random variable with a Poisson distribution:
- $X \sim \Poisson \lambda$
Then $\lambda$ is the parameter of $\Poisson \lambda$.
Binomial Distribution
Let $X$ be a discrete random variable with a binomial distribution:
- $X \sim \Binomial n p$
Then $n$ and $p$ are the parameters of $\Binomial n p$.
Also see
- Results about parameters of probability distributions can be found here.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): parameter: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): parameter: 2.