Definition:Pointwise Minimum of Mappings

From ProofWiki
Jump to navigation Jump to search


Let $X$ be a set, and let $\left({S, \preceq}\right)$ be a toset.

Let $f, g: X \to S$ be mappings.

Let $\min$ be the min operation on $\left({S, \preceq}\right)$.

Then the pointwise minimum of $f$ and $g$, denoted $\min \left({f, g}\right)$, is defined by:

$\max \left({f, g}\right): X \to S: \min \left({f, g}\right) \, \left({x}\right) := \min \left({f \left({x}\right), g \left({x}\right)}\right)$

Pointwise minimum thence is an instance of a pointwise operation on mappings.


Also see