Definition:Power of Element/Group
< Definition:Power of Element(Redirected from Definition:Power of Group Element)
Jump to navigation
Jump to search
Definition
Let $\struct {G, \circ}$ be a group whose identity element is $e$.
Let $g \in G$.
Let $n \in \Z$.
The definition $g^n = \map {\circ^n} g$ as the $n$th power of $g$ in a monoid can be extended to allow negative values of $n$:
- $g^n = \begin{cases} e & : n = 0 \\ g^{n - 1} \circ g & : n > 0 \\ \paren {g^{-n} }^{-1} & : n < 0 \end{cases}$
or
- $n \cdot g = \begin{cases} e & : n = 0 \\ \paren {\paren {n - 1} \cdot g} \circ g & : n > 0 \\ -\paren {-n \cdot g} & : n < 0 \end{cases}$
The validity of this definition follows from the group axioms: $g$ has an inverse element.
Sources
- 1964: Iain T. Adamson: Introduction to Field Theory ... (previous) ... (next): Chapter $\text {I}$: Elementary Definitions: $\S 2$. Elementary Properties
- 1964: Walter Ledermann: Introduction to the Theory of Finite Groups (5th ed.) ... (previous) ... (next): Chapter $\text {I}$: The Group Concept: $\S 2$: The Axioms of Group Theory
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.4$
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): $\S 2.1$: Subrings: Notation $2$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Definition of Group Structure: $\S 27$
- 1972: A.G. Howson: A Handbook of Terms used in Algebra and Analysis ... (previous) ... (next): $\S 5$: Groups $\text{I}$
- 1974: Thomas W. Hungerford: Algebra ... (previous) ... (next): $\text{I}$: Groups: $\S 1$: Semigroups, Monoids and Groups
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $3$: Elementary consequences of the definitions: Definition $3.7$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): power (of a real number)