Definition:Projection (Analytic Geometry)

From ProofWiki
Jump to navigation Jump to search

This page is about projections in analytic geometry. For other uses, see Definition:Projection.


Let $M$ and $N$ be distinct lines through the origin in the plane.

The projection on $M$ along $N$ is the mapping $\pr_{M, N}$ such that:

$\forall x \in \R^2: \map {\pr_{M, N} } x =$ the intersection of $M$ with the line through $x$ parallel to $N$.