Definition:Proper Orthogonal Matrix

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf Q$ be an orthogonal matrix.


Then $\mathbf Q$ is a proper orthogonal matrix if and only if:

$\det \left({\mathbf Q}\right) = 1$

where $\det \left({\mathbf Q}\right)$ is the determinant of $\mathbf Q$.


Sources