Definition:Proper Zero Divisor

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +, \circ}$ be a ring.


A proper zero divisor of $R$ is an element $x \in R^*$ such that:

$\exists y \in R^*: x \circ y = 0_R$

where $R^*$ is defined as $R \setminus \set {0_R}$.


That is, it is a zero divisor of $R$ which is specifically not $0_R$.


The presence of a proper zero divisor in a ring means that the product of two elements of the ring may be zero even if neither factor is zero.

That is, if $R$ has proper zero divisors, then $\struct {R^*, \circ}$ is not closed.


Also known as

Some authors exclude $0_R$ as a zero divisor and thus refer to this concept simply as zero divisor.

Some sources use the more precise term proper divisor of zero.


Examples

Proper Zero Divisors of Integer Multiplication Modulo $6$

Consider the multiplicative monoid of integers modulo $6$, defined by its Cayley table:

$\begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \\ \end{array}$


Thus we have:

$\eqclass 2 6 \times \eqclass 3 6 = \eqclass 0 6$

and:

$\eqclass 4 6 \times \eqclass 3 6 = \eqclass 0 6$


Hence in the ring of integers modulo $6$, there are seen to be $3$ proper zero divisors: $\eqclass 2 6$, $\eqclass 3 6$ and $\eqclass 4 6$.


Proper Zero Divisors of Ring of Order 2 Complex Matrices

Consider the ring of square matrices $\struct {\map {\MM_\C} 2, +, \times}$ of order $2$ over the complex numbers $\C$.

We have:

$\begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix} \begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix} = \begin {pmatrix} 0 & 0 \\ 0 & 0 \end {pmatrix}$

demonstrating that $\begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix}$ is a proper zero divisor of $\struct {\map {\MM_\C} 2, +, \times}$.


Also see


Sources