Definition:Proper Zero Divisor

From ProofWiki
Jump to: navigation, search

Definition

Let $\struct {R, +, \circ}$ be a ring.


A proper zero divisor of $R$ is an element $x \in R^*$ such that:

$\exists y \in R^*: x \circ y = 0_R$

where $R^*$ is defined as $R \setminus \set {0_R}$.


That is, it is a zero divisor of $R$ which is specifically not $0_R$.


The presence of a proper zero divisor in a ring means that the product of two elements of the ring may be zero even if neither factor is zero.

That is, if $R$ has proper zero divisors, then $\struct {R^*, \circ}$ is not closed.


Also known as

Some authors exclude $0_R$ as a zero divisor and thus refer to this concept simply as zero divisor.


Examples

Proper Zero Divisors of Integer Multiplication Modulo $6$

Consider the multiplicative monoid of integers modulo $6$, defined by its Cayley table:

$\begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \\ \end{array}$

which can also be presented:

$\begin{array} {r|rrrrrr} \times_6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 \\ 2 & 0 & 2 & 4 & 0 & 2 & 4 \\ 3 & 0 & 3 & 0 & 3 & 0 & 3 \\ 4 & 0 & 4 & 2 & 0 & 4 & 2 \\ 5 & 0 & 5 & 4 & 3 & 2 & 1 \\ \end{array}$


Thus we have:

$\eqclass 2 6 \times \eqclass 3 6 = \eqclass 0 6$

and:

$\eqclass 4 6 \times \eqclass 3 6 = \eqclass 0 6$


Hence in the ring of integers modulo $6$, there are seen to be $3$ proper zero divisors: $\eqclass 2 6$, $\eqclass 3 6$ and $\eqclass 4 6$.


Also see


Sources