Definition:Proper Zero Divisor
Definition
Let $\struct {R, +, \circ}$ be a ring.
A proper zero divisor of $R$ is an element $x \in R^*$ such that:
- $\exists y \in R^*: x \circ y = 0_R$
where $R^*$ is defined as $R \setminus \set {0_R}$.
That is, it is a zero divisor of $R$ which is specifically not $0_R$.
The presence of a proper zero divisor in a ring means that the product of two elements of the ring may be zero even if neither factor is zero.
That is, if $R$ has proper zero divisor, then $\struct {R^*, \circ}$ is not closed.
Examples
Proper Zero Divisors of Integer Multiplication Modulo $6$
Consider the multiplicative monoid of integers modulo $6$, defined by its Cayley table:
$\quad \begin{array} {r|rrrrrr} \struct {\Z_6, \times_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 & \eqclass 0 6 \\ \eqclass 1 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 2 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 & \eqclass 0 6 & \eqclass 2 6 & \eqclass 4 6 \\ \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 & \eqclass 0 6 & \eqclass 3 6 \\ \eqclass 4 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 & \eqclass 0 6 & \eqclass 4 6 & \eqclass 2 6 \\ \eqclass 5 6 & \eqclass 0 6 & \eqclass 5 6 & \eqclass 4 6 & \eqclass 3 6 & \eqclass 2 6 & \eqclass 1 6 \end{array}$
Thus we have:
- $\eqclass 2 6 \times \eqclass 3 6 = \eqclass 0 6$
and:
- $\eqclass 4 6 \times \eqclass 3 6 = \eqclass 0 6$
Hence in the ring of integers modulo $6$, there are seen to be $3$ proper zero divisors: $\eqclass 2 6$, $\eqclass 3 6$ and $\eqclass 4 6$.
Proper Zero Divisors of Ring of Order 2 Complex Matrices
Consider the ring of square matrices $\struct {\map {\MM_\C} 2, +, \times}$ of order $2$ over the complex numbers $\C$.
We have:
- $\begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix} \begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix} = \begin {pmatrix} 0 & 0 \\ 0 & 0 \end {pmatrix}$
demonstrating that $\begin {pmatrix} 1 & i \\ i & -1 \end {pmatrix}$ is a proper zero divisor of $\struct {\map {\MM_\C} 2, +, \times}$.
Also known as
Some authors exclude $0_R$ as a zero divisor and thus refer to a proper zero divisor simply as zero divisor.
Some sources hyphenate: proper zero-divisor.
Some sources use the more precise term proper divisor of zero.
Also see
- Results about Proper zero divisors can be found here.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $21$. Rings and Integral Domains
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Integral Domains: $\S 3$. Definition of an Integral Domain
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): Chapter $1$: Rings - Definitions and Examples: $3$: Some special classes of rings
- 1972: A.G. Howson: A Handbook of Terms used in Algebra and Analysis ... (previous) ... (next): $\S 6$: Rings and fields
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): divisor of zero
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): integral domain
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): ring
- 2008: Paul Halmos and Steven Givant: Introduction to Boolean Algebras ... (previous) ... (next): $\S 1$: Exercise $9$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): divisor of zero
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): integral domain
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): ring