Definition:Hyperbolic Cosine/Real
< Definition:Hyperbolic Cosine(Redirected from Definition:Real Hyperbolic Cosine)
Jump to navigation
Jump to search
Definition
The real hyperbolic cosine function is defined on the real numbers as:
- $\cosh: \R \to \R$:
- $\forall x \in \R: \cosh x := \dfrac {e^x + e^{-x} } 2$
Also see
- Definition:Real Hyperbolic Sine
- Definition:Real Hyperbolic Tangent
- Definition:Real Hyperbolic Cotangent
- Definition:Real Hyperbolic Secant
- Definition:Real Hyperbolic Cosecant
- Results about the hyperbolic cosine function can be found here.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $8.2$: Definition of Hyperbolic Functions
- 1972: Frank Ayres, Jr. and J.C. Ault: Theory and Problems of Differential and Integral Calculus (SI ed.) ... (previous) ... (next): Chapter $15$: Differentiation of Hyperbolic Functions: Definition of Hyperbolic Functions
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.11$: The Catenary, or Curve of a Hanging Chain: Footnote $1$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): hyperbolic function
- Weisstein, Eric W. "Hyperbolic Cosine." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HyperbolicCosine.html