Definition:Null Sequence/Real Numbers
< Definition:Null Sequence(Redirected from Definition:Real Null Sequence)
Jump to navigation
Jump to search
Definition
Let $\sequence {x_n}$ be a sequence in $\R$ which converges to a limit of $0$:
- $\ds \lim_{n \mathop \to \infty} x_n = 0$
Then $\sequence {x_n}$ is called a (real) null sequence.
Examples
Example: $n^\alpha x^n$
Let $\alpha \in \Q$ be a (strictly) positive rational number.
Let $x \in \R$ be a real number such that $\size x < 1$.
Let $\sequence {a_n}_{n \mathop \ge 1}$ be the real sequence defined as:
- $\forall n \in \Z_{>0}: a_n = n^\alpha x^n$
Then $\sequence {a_n}$ is a null sequence:
- $\ds \lim_{n \mathop \to \infty} n^\alpha x^n = 0$