Definition:Recursively Defined Mapping/Natural Numbers
Jump to navigation
Jump to search
Definition
Let $p \in \N$ be a natural number.
Let $S = \set {x \in \N: p \le x}$.
Let $T$ be a set.
Let $g: T \to T$ be a mapping.
Let $f: S \to T$ be the mapping defined as:
- $\forall x \in S: \map f x = \begin{cases} a & : x = p \\ \map g {\map f n} & : x = n + 1 \end{cases}$
for $a \in T$.
Then $f$ is said to be recursively defined on $S$.
Also see
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $1$: Some Preliminary Considerations: $1.1$ Mathematical Induction