Definition:Recursively Defined Mapping/Peano Structure
Jump to navigation
Jump to search
Definition
Let $\struct {P, 0, s}$ be a Peano structure.
Let $T$ be a set.
Let $g: T \to T$ be a mapping.
Let $f: P \to T$ be the mapping defined as:
- $\forall x \in P: \map f x = \begin {cases} a & : x = 0 \\ \map g {\map f n} & : x = \map s n \end {cases}$
where $a \in T$.
Then $f$ is said to be recursively defined on $P$.