Definition:Recursively Enumerable Set
Jump to navigation
Jump to search
Definition
Let $k \in \N$ be a natural number.
Let $f : \N^k \to \N$ be a recursive function.
Let $S = \Img f$ be the image of $f$.
Then $S$ is a recursively enumerable set.
Sources
- Sakharov, Alex and Weisstein, Eric W. "Recursively Enumerable Set." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RecursivelyEnumerableSet.html