Definition:Regular Level Set

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M$ be a smooth manifold.

Let $f \in \map {C^\infty} M : M \to \R$ be a smooth real-valued function.

Let $p \in M$ be a base point in $M$.

Let $\d f_p$ be the differential of $f$ at $p$.

Let $c \in \R$.

Let $\inv f c$ be a level set.

Suppose every point of $\inv f c$ is a regular point of $f$:

$\forall p \in \inv f c : \d f_p \ne 0$


Then $\inv f c$ is called a regular level set.




Sources