Definition:Self-Inverse Element/Definition 2

From ProofWiki
Jump to: navigation, search


Let $\struct {S, \circ}$ be a monoid whose identity element is $e$.

Let $x \in S$ be an element of $S$.

$x$ is a self-inverse element of $\struct {S, \circ}$ if and only if:

$x$ is invertible


$x = x^{-1}$, where $x^{-1}$ is the inverse of $x$.

Also known as

The definition of a self-inverse element is usually made in the context of a group.

Some sources refer to such an element as an involution.

Also see