Definition:Semantic Consequence/Boolean Interpretations
< Definition:Semantic Consequence(Redirected from Definition:Semantic Consequence (Boolean Interpretations))
Jump to navigation
Jump to search
Definition
Let $\FF$ be a collection of WFFs of propositional logic.
Then a WFF $\mathbf A$ is a semantic consequence of $\FF$ if and only if:
- $v \models_{\mathrm{BI}} \FF$ implies $v \models_{\mathrm{BI}} \mathbf A$
where $\models_{\mathrm{BI}}$ is the models relation.
Semantic Consequence of Single Formula
Let $\mathbf A, \mathbf B$ be WFFs of propositional logic.
Definition 1
Then $\mathbf A$ is a semantic consequence of $\mathbf B$ if and only if:
- $v \models_{\mathrm{BI}} \mathbf B$ implies $v \models_{\mathrm{BI}} \mathbf A$
for all boolean interpretations $v$.
Here, $\models_{\mathrm{BI}}$ is the models relation.
Definition 2
Then $\mathbf A$ is a semantic consequence of $\mathbf B$ if and only if:
- $\mathbf A \implies \mathbf B$ is a tautology
where $\implies$ is the conditional connective.
Notation
That $\mathbf A$ is a semantic consequence of $\FF$ is denoted as:
- $\FF \models_{\mathbf{BI}} \mathbf A$
Sources
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): $\S 2.5.3$: Definition $2.48$