Category:Definitions/Boolean Interpretations
Jump to navigation
Jump to search
This category contains definitions related to Boolean Interpretations.
Related results can be found in Category:Boolean Interpretations.
Let $\LL_0$ be the language of propositional logic, with vocabulary $\PP_0$.
A boolean interpretation for $\LL_0$ is a propositional function:
- $v: \PP_0 \to \set {\T, \F}$
Pages in category "Definitions/Boolean Interpretations"
The following 49 pages are in this category, out of 49 total.
B
- Definition:Boolean Interpretation
- Definition:Boolean Interpretation of Conditional
- Definition:Boolean Interpretation of Conjunction
- Definition:Boolean Interpretation of Formula
- Definition:Boolean Interpretation of Set of Formulas
- Definition:Boolean Interpretation/Formal Semantics
- Definition:Boolean Interpretation/Formal Semantics/Invalid
- Definition:Boolean Interpretation/Formula
- Definition:Boolean Interpretation/Set of Formulas
- Definition:Boolean Interpretation/Truth Value
D
F
M
P
S
- Definition:Satisfiable (Boolean Interpretations)
- Definition:Satisfiable/Boolean Interpretations
- Definition:Semantic Consequence (Boolean Interpretations)
- Definition:Semantic Consequence/Boolean Interpretations
- Definition:Semantic Consequence/Boolean Interpretations/Single Formula
- Definition:Semantic Consequence/Boolean Interpretations/Single Formula/Definition 1
- Definition:Semantic Consequence/Boolean Interpretations/Single Formula/Definition 2
- Definition:Semantic Equivalence (Boolean Interpretations)
- Definition:Semantic Equivalence for Boolean Interpretations
- Definition:Semantic Equivalence/Boolean Interpretations
- Definition:Semantic Equivalence/Boolean Interpretations/Definition 1
- Definition:Semantic Equivalence/Boolean Interpretations/Definition 2
- Definition:Semantic Equivalence/Boolean Interpretations/Definition 3