Definition:Semantic Consequence/Boolean Interpretations/Single Formula/Definition 2

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf A, \mathbf B$ be WFFs of propositional logic.


Then $\mathbf A$ is a semantic consequence of $\mathbf B$ if and only if:

$\mathbf A \implies \mathbf B$ is a tautology

where $\implies$ is the conditional connective.


Notation

That $\mathbf A$ is a semantic consequence of $\mathbf B$ can be denoted as:

$\mathbf B \models_{\mathrm{BI}} \mathbf A$


Also see


Sources