Definition:Seminorm (Scalar Product Space)
Jump to navigation
Jump to search
Definition
Let $\struct {V, \innerprod \cdot \cdot}$ be a scalar product space.
Let $v \in V$ be a vector.
Then the seminorm of $v$ is defined as:
- $\norm v :=\sqrt {\innerprod v v}$
Sources
- 2018: John M. Lee: Introduction to Riemannian Manifolds (2nd ed.) ... (previous) ... (next): $\S 2$: Riemannian Metrics. Pseudo-Riemannian Metrics