Definition:Smooth Fiber Bundle
Jump to navigation
Jump to search
Definition
Let $E, M, F$ be smooth manifolds.
Let $\pi$ be a smooth surjection.
Let $B = \left({ E, M, \pi, F }\right)$ be a fiber bundle with a system of local trivializations $\left\{{ \left({ U_\alpha, \chi_\alpha }\right) : \alpha \in I }\right\}$ such that $\forall \alpha \in I$ :
- $\chi_\alpha : \pi^{-1}\left({ U_\alpha }\right) \to U_\alpha \times F$
is smooth.
Then $B$ is called a smooth fiber bundle on $M$.
Also see
Sources
- 2003: John M. Lee: Introduction to Smooth Manifolds: $\S 10$: Fiber Bundles