Category:Definitions/Manifolds
Jump to navigation
Jump to search
This category contains definitions related to Manifolds.
Related results can be found in Category:Manifolds.
Let $M$ be a second-countable locally Euclidean space of dimension $d$.
Let $\mathscr F$ be a $d$-dimensional differentiable structure on $M$ of class $\CC^k$, where $k \ge 1$.
Then $\struct {M, \mathscr F}$ is a differentiable manifold of class $\CC^k$ and dimension $d$.
Subcategories
This category has the following 15 subcategories, out of 15 total.
C
- Definitions/Charts (2 P)
- Definitions/Cross-Caps (1 P)
D
- Definitions/Diffeomorphisms (2 P)
H
- Definitions/Handles (1 P)
L
R
- Definitions/Ricci Flow (1 P)
S
- Definitions/Smooth Curves (7 P)
- Definitions/Submanifolds (3 P)
T
- Definitions/Tangent Spaces (1 P)
- Definitions/Tangent Vectors (5 P)
Pages in category "Definitions/Manifolds"
The following 57 pages are in this category, out of 57 total.
A
C
- Definition:Chart
- Definition:Chart Centered at Point
- Definition:Chart Compatible with Atlas
- Definition:Class of Atlas
- Definition:Class of Differentiable Structure
- Definition:Compatible Atlases
- Definition:Compatible Charts
- Definition:Compatible Charts/Smooth
- Definition:Complete Atlas
- Definition:Complex Analytic Differentiable Structure
- Definition:Complex Locally Euclidean Space
- Definition:Complex Manifold
- Definition:Connected Manifold
- Definition:Coordinate Ball
- Definition:Coordinate Cube
- Definition:Coordinate Domain
- Definition:Coordinate Function
- Definition:Coordinate Neighborhood
- Definition:Cross-Cap