# Definition:Strictly Convex Real Function

Jump to navigation Jump to search

## Definition

Let $f$ be a real function which is defined on a real interval $I$.

### Definition 1

$f$ is strictly convex on $I$ if and only if:

$\forall x, y \in I, x \ne y: \forall \alpha, \beta \in \R_{>0}, \alpha + \beta = 1: \map f {\alpha x + \beta y} < \alpha \map f x + \beta \map f y$

### Definition 2

$f$ is strictly convex on $I$ if and only if:

$\forall x_1, x_2, x_3 \in I: x_1 < x_2 < x_3: \dfrac {f \left({x_2}\right) - f \left({x_1}\right)} {x_2 - x_1} < \dfrac {f \left({x_3}\right) - f \left({x_2}\right)} {x_3 - x_2}$

### Definition 3

$f$ is strictly convex on $I$ if and only if:

$\forall x_1, x_2, x_3 \in I: x_1 < x_2 < x_3: \dfrac {f \left({x_2}\right) - f \left({x_1}\right)} {x_2 - x_1} < \dfrac {f \left({x_3}\right) - f \left({x_1}\right)} {x_3 - x_1}$

## Also known as

A strictly convex function can also be referred to as:

• a strictly concave up function
• a strictly convex down function

## Also see

• Results about convex real functions can be found here.