Definition:Topology Induced by Metric

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M = \left({A, d}\right)$ be a metric space.


Definition 1

The topology on the metric space $M = \left({A, d}\right)$ induced by (the metric) $d$ is defined as the set $\tau$ of all open sets of $M$.


Definition 2

The topology on the metric space $M = \left({A, d}\right)$ induced by (the metric) $d$ is defined as the topology $\tau$ generated by the basis consisting of the set of all open $\epsilon$-balls in $M$.


Also known as

The topological space which is so induced is also known as the topological space associated with the (given) metric space.

When the context is clear, the phase metric topology for $d$ can be used.

The metric space whose metric induces this topology can be said to give rise to the topological space.


Also see