Derivative Form of Associated Legendre Function of the First Kind
Jump to navigation
Jump to search
Theorem
Let $\map { {P_n}^m} x$ be an associated Legendre function of the first kind.
Then:
- $\map { {P_n}^m} x = \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.2$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.50.$