# Derivative of Arcsecant Function/Corollary 1

Jump to navigation Jump to search

## Corollary to Derivative of Arcsecant Function

Let $x \in \R$.

Let $\map \arcsec {\dfrac x a}$ be the arcsecant of $\dfrac x a$.

Then:

$\dfrac {\map \d {\map \arcsec {\frac x a} } } {\d x} = \dfrac a {\size x \sqrt {x^2 - a^2} } = \begin {cases} \dfrac a {x \sqrt {x^2 - a^2} } & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \ (\text {that is:$x > a$}) \\ \dfrac {-a} {x \sqrt {x^2 - a^2} } & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \ (\text {that is:$x < -a$}) \\ \end{cases}$

## Proof

 $\ds \frac {\map \d {\map \arcsec {\frac x a} } } {\d x}$ $=$ $\ds \frac 1 a \frac 1 {\size {\frac x a} \sqrt {\paren {\frac x a}^2 - 1} }$ Derivative of Arcsecant Function and Derivative of Function of Constant Multiple $\ds$ $=$ $\ds \frac 1 a \frac 1 {\size {\frac x a} \frac {\sqrt {x^2 - a^2} } a}$ $\ds$ $=$ $\ds \frac 1 a \frac {a^2} {\size x {\sqrt {x^2 - a^2} } }$ $\ds$ $=$ $\ds \frac a {\size x {\sqrt {x^2 - a^2} } }$

$\Box$

Similarly:

 $\ds \frac {\map \d {\map \arcsec {\frac x a} } } {\d x}$ $=$ $\ds \begin {cases} \dfrac 1 a \dfrac {+1} {\frac x a \sqrt {\paren {\frac x a}^2 - 1} } & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \ (\text {that is: \dfrac x a > 1}) \\ \dfrac 1 a \dfrac {-1} {\frac x a \sqrt {\paren {\frac x a}^2 - 1} } & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \ (\text {that is: \dfrac x a < -1}) \\ \end{cases}$ Derivative of Arcsecant Function and Derivative of Function of Constant Multiple $\ds$ $=$ $\ds \begin {cases} \dfrac a {x \sqrt {x^2 - a^2} } & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \\ \dfrac {-a} {x \sqrt {x^2 - a^2} } & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \\ \end{cases}$ simplifying as above

$\blacksquare$