Derivative of Arcsecant Function
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number such that $\size x > 1$.
Let $\arcsec x$ be the arcsecant of $x$.
Then:
- $\dfrac {\map \d {\arcsec x} } {\d x} = \dfrac 1 {\size x \sqrt {x^2 - 1} } = \begin {cases} \dfrac {+1} {x \sqrt {x^2 - 1} } & : 0 < \arcsec x < \dfrac \pi 2 \ (\text {that is: $x > 1$}) \\ \dfrac {-1} {x \sqrt {x^2 - 1} } & : \dfrac \pi 2 < \arcsec x < \pi \ (\text {that is: $x < -1$}) \\ \end{cases}$
Corollary 1
- $\map {\dfrac \d {\d x} } {\map \arcsec {\dfrac x a} } = \dfrac a {\size x \sqrt {x^2 - a^2} } = \begin {cases} \dfrac a {x \sqrt {x^2 - a^2} } & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \ (\text {that is: $x > a$}) \\ \dfrac {-a} {x \sqrt {x^2 - a^2} } & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \ (\text {that is: $x < -a$}) \\ \end{cases}$
Corollary 2
- $\dfrac {\map \d {\arcsec x} } {\d x} = \dfrac 1 {x^2 \sqrt {1 - \frac 1 {x^2} } }$
Proof
Let $y = \arcsec x$ where $\size x > 1$.
Then:
\(\ds y\) | \(=\) | \(\ds \arcsec x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \sec y\) | where $y \in \closedint 0 \pi \land y \ne \dfrac \pi 2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d y}\) | \(=\) | \(\ds \sec y \ \tan y\) | Derivative of Secant Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d y} {\d x}\) | \(=\) | \(\ds \dfrac 1 {\sec y \tan y}\) | Derivative of Inverse Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\frac {\d y} {\d x} }^2\) | \(=\) | \(\ds \frac 1 {\sec^2 y \ \tan^2 y}\) | squaring both sides | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\sec^2 y \paren {\sec^2 y - 1} }\) | Difference of Squares of Secant and Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {x^2 \paren {x^2 - 1} }\) | Definition of $x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {\dfrac {\d y} {\d x} }\) | \(=\) | \(\ds \dfrac 1 {\size x \sqrt {x^2 - 1} }\) | squaring both sides |
Since $\dfrac {\d y} {\d x} = \dfrac 1 {\sec y \tan y}$, the sign of $\dfrac {\d y} {\d x}$ is the same as the sign of $\sec y \tan y$.
Writing $\sec y \tan y$ as $\dfrac {\sin y} {\cos^2 y}$, it is evident that the sign of $\dfrac {\d y} {\d x}$ is the same as the sign of $\sin y$.
From Sine and Cosine are Periodic on Reals, $\sin y$ is never negative on its domain ($y \in \closedint 0 \pi \land y \ne \pi/2$).
However, by definition of the arcsecant of $x$:
- $0 < \arcsec x < \dfrac \pi 2 \implies x > 1$
- $\dfrac \pi 2 < \arcsec x < \pi \implies x < -1$
Thus:
- $\dfrac {\map \d {\arcsec x} } {\d x} = \dfrac 1 {\size x \sqrt {x^2 - 1} } = \begin{cases} \dfrac {+1} {x \sqrt {x^2 - 1} } & : 0 < \arcsec x < \dfrac \pi 2 \ (\text {that is: $x > 1$}) \\ \dfrac {-1} {x \sqrt {x^2 - 1} } & : \dfrac \pi 2 < \arcsec x < \pi \ (\text {that is: $x < -1$}) \\ \end{cases}$
Hence the result.
$\blacksquare$
Also see
- Derivative of Arcsine Function
- Derivative of Arccosine Function
- Derivative of Arctangent Function
- Derivative of Arccotangent Function
- Derivative of Arccosecant Function
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- Weisstein, Eric W. "Inverse Secant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseSecant.html