Derivative of General Exponential Function/Proof 2
Jump to navigation
Jump to search
Theorem
Let $a \in \R: a > 0$.
Let $a^x$ be $a$ to the power of $x$.
Then:
- $\map {\dfrac \d {\d x} } {a^x} = a^x \ln a$
Proof
\(\ds \lim_{h \mathop \to 0} \frac {a^{x + h} - a^x} h\) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \frac {a^h - 1} h\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \frac {\map \exp {h \ln a} - 1} h\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \paren {\frac {\map \exp {h \ln a} - 1} {h \ln a} } \paren {\frac {h \ln a} h}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \paren {\frac {h \ln a} h}\) | Derivative of Exponential at Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$