Derivative of General Exponential Function
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{>0}$.
Let $a^x$ be $a$ to the power of $x$.
Then:
- $\map {\dfrac \d {\d x} } {a^x} = a^x \ln a$
Proof 1
\(\ds \map {\frac \d {\d x} } {a^x}\) | \(=\) | \(\ds \map {\frac \d {\d x} } {e^{x \ln a} }\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln a e^{x \ln a}\) | Derivative of $e^{a x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$
Proof 2
\(\ds \lim_{h \mathop \to 0} \frac {a^{x + h} - a^x} h\) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \frac {a^h - 1} h\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \frac {\map \exp {h \ln a} - 1} h\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \paren {\frac {\map \exp {h \ln a} - 1} {h \ln a} } \paren {\frac {h \ln a} h}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^x \lim_{h \mathop \to 0} \paren {\frac {h \ln a} h}\) | Derivative of Exponential at Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$
Proof 3
Let $y = a^x$.
Then:
\(\ds \ln y\) | \(=\) | \(\ds x \ln a\) | Logarithm of Power | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 y \dfrac {\d y} {\d x}\) | \(=\) | \(\ds \ln a\) | Derivative of Identity Function: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 {a^x} \dfrac {\d y} {\d x}\) | \(=\) | \(\ds \ln a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {\d y} {\d x}\) | \(=\) | \(\ds a^x \ln a\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $7$: Derivatives