Derivative of Solution to Constant Coefficient Homogeneous LSOODE is also Solution
Jump to navigation
Jump to search
Theorem
Let:
- $(1): \quad y' ' + p y' + q y = 0$
be a constant coefficient homogeneous linear second order ODE.
Let $\map y x$ be a particular solution of $(1)$.
Then its derivative $\map {y'} x$ is also a particular solution of $(1)$.
Proof
By Solution of Constant Coefficient Homogeneous LSOODE, $y$ is in one of the following forms:
- $y = \begin{cases} C_1 e^{m_1 x} + C_2 e^{m_2 x} & : p^2 > 4 q \\ & \\ C_1 e^{m_1 x} + C_2 x e^{m_2 x} & : p^2 = 4 q \\ & \\ e^{a x} \paren {C_1 \sin b x + C_2 \cos b x} & : p^2 < 4 q \end{cases}$
Let:
- $y = A e^{m_1 x} + B e^{m_2 x}$
where $A, B \in \R$.
Then:
- $y' = m_1 A e^{m_1 x} + m_2 B e^{m_2 x}$
which is also in the form:
- $y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$
and so is also a particular solution of $(1)$.
$\Box$
Let:
- $y = A e^{m_1 x} + B x e^{m_1 x}$
where $A, B \in \R$.
Then:
\(\ds y'\) | \(=\) | \(\ds m_1 A e^{m_1 x} + B e^{m_1 x} + B m_1 x e^{m_1 x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {m_1 A + B} e^{m_1 x} + B m_1 x e^{m_1 x}\) |
which is also in the form:
- $y = C_1 e^{m_1 x} + C_2 x e^{m_1 x}$
and so is also a particular solution of $(1)$.
$\Box$
Let:
- $y = e^{a x} \left({A \sin b x + B \cos b x}\right)$
where $A, B \in \R$.
Then:
- $y' = m_1 A e^{m_1 x} + m_2 B e^{m_2 x}$
\(\ds y'\) | \(=\) | \(\ds a e^{a x} \paren {A \sin b x + B \cos b x} + e^{a x} \paren {A b \cos b x - B b \sin b x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} \paren {a A \sin b x + a B \cos b x + A b \cos b x - B b \sin b x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} \paren {\paren {a B + A b} \cos b x + \paren {a A - b B} \sin b x}\) |
which is also in the form:
- $y = e^{a x} \paren {C_1 \sin b x + C_2 \cos b x}$
and so is also a particular solution of $(1)$.
$\Box$
Hence the result.
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.17$: Problem $3$