Solution of Constant Coefficient Homogeneous LSOODE
Theorem
Let:
- $(1): \quad y' ' + p y' + q y = 0$
be a constant coefficient homogeneous linear second order ODE.
Let $m_1$ and $m_2$ be the roots of the auxiliary equation $m^2 + p m + q = 0$.
Then $(1)$ has the general solution:
- $y = \begin{cases} C_1 e^{m_1 x} + C_2 e^{m_2 x} & : p^2 > 4 q \\ & \\ \paren {C_1 + C_2 x} e^{m_1 x} & : p^2 = 4 q \\ & \\ e^{a x} \paren {C_1 \sin b x + C_2 \cos b x} & : p^2 < 4 q \end{cases}$
where:
- $a + i b = m_1$
- $a - i b = m_2$
Proof
Real Roots of Auxiliary Equation
Consider the auxiliary equation of $(1)$:
- $(2): \quad m^2 + p m + q$
Let $p^2 > 4 q$.
From Solution to Quadratic Equation with Real Coefficients, $(2)$ has two real roots:
\(\ds m_1\) | \(=\) | \(\ds -\frac p 2 + \sqrt {\frac {p^2} 4 - q}\) | ||||||||||||
\(\ds m_2\) | \(=\) | \(\ds -\frac p 2 - \sqrt {\frac {p^2} 4 - q}\) |
As $p^2 > 4 q$ we have that:
- $\sqrt {\dfrac {p^2} 4 - q} \ne 0$
and so:
- $m_1 \ne m_2$
\(\ds y_1\) | \(=\) | \(\ds e^{m_1 x}\) | ||||||||||||
\(\ds y_2\) | \(=\) | \(\ds e^{m_2 x}\) |
are both particular solutions to $(1)$.
We also have that:
\(\ds \frac {y_1} {y_2}\) | \(=\) | \(\ds \frac {e^{m_1 x} } {e^{m_2 x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{\paren {m_1 - m_2} x}\) | ||||||||||||
\(\ds \) | \(\ne\) | \(\ds 0\) | as $m_1 \ne m_2$ |
Thus $y_1$ and $y_2$ are linearly independent.
It follows from Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution that:
- $y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$
is the general solution to $(1)$.
$\Box$
Equal Real Roots of Auxiliary Equation
Consider the auxiliary equation of $(1)$:
- $(2): \quad m^2 + p m + q$
Let $p^2 = 4 q$.
From Solution to Quadratic Equation with Real Coefficients, $(2)$ has one (repeated) root, that is:
- $m_1 = m_2 = -\dfrac p 2$
- $y_1 = e^{m_1 x}$
is a particular solution to $(1)$.
From Particular Solution to Homogeneous Linear Second Order ODE gives rise to Another:
- $\map {y_2} x = \map v x \, \map {y_1} x$
where:
- $\ds v = \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x$
is also a particular solution of $(1)$.
We have that:
\(\ds \int P \rd x\) | \(=\) | \(\ds \int p \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds p x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{-\int P \rd x}\) | \(=\) | \(\ds e^{-p x}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{2 m_1 x}\) |
Hence:
\(\ds v\) | \(=\) | \(\ds \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x\) | Definition of $v$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \dfrac 1 {e^{2 m_1 x} } e^{2 m_1 x} \rd x\) | as $y_1 = e^{m_1 x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x\) |
and so:
\(\ds y_2\) | \(=\) | \(\ds v y_1\) | Definition of $y_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x e^{m_1 x}\) |
From Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution:
- $y = C_1 e^{m_1 x} + C_2 x e^{m_1 x}$
$\Box$
Complex Roots of Auxiliary Equation
Consider the auxiliary equation of $(1)$:
- $(2): \quad m^2 + p m + q$
Let $p^2 < 4 q$.
From Solution to Quadratic Equation with Real Coefficients, $(2)$ has two complex roots:
\(\ds m_1\) | \(=\) | \(\ds -\frac p 2 + i \sqrt {q - \frac {p^2} 4}\) | ||||||||||||
\(\ds m_2\) | \(=\) | \(\ds -\frac p 2 - i \sqrt {q - \frac {p^2} 4}\) |
As $p^2 < 4 q$ we have that:
- $\sqrt {q - \dfrac {p^2} 4} \ne 0$
and so:
- $m_1 \ne m_2$
Let:
\(\ds m_1\) | \(=\) | \(\ds a + i b\) | ||||||||||||
\(\ds m_2\) | \(=\) | \(\ds a - i b\) |
where $a = -\dfrac p 2$ and $b = \sqrt {q - \dfrac {p^2} 4}$.
\(\ds y_a\) | \(=\) | \(\ds e^{m_1 x}\) | ||||||||||||
\(\ds y_b\) | \(=\) | \(\ds e^{m_2 x}\) |
are both particular solutions to $(1)$.
We can manipulate $y_a$ and $y_b$ into the following forms:
\(\ds y_a\) | \(=\) | \(\ds e^{m_1 x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{\paren {a + i b} x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} e^{i b x}\) | ||||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds e^{a x} \paren {\cos b x + i \sin b x}\) | Euler's Formula |
and:
\(\ds y_b\) | \(=\) | \(\ds e^{m_2 x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{\paren {a - i b} x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} e^{-i b x}\) | ||||||||||||
\(\text {(4)}: \quad\) | \(\ds \) | \(=\) | \(\ds e^{a x} \paren {\cos b x - i \sin b x}\) | Euler's Formula: Corollary |
Hence:
\(\ds y_a + y_b\) | \(=\) | \(\ds e^{a x} \paren {\cos b x + i \sin b x} + e^{a x} \paren {\cos b x - i \sin b x}\) | adding $(3)$ and $(4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 e^{a x} \cos b x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {y_a + y_b} 2\) | \(=\) | \(\ds e^{a x} \cos b x\) |
\(\ds y_b - y_a\) | \(=\) | \(\ds e^{a x} \paren {\cos b x - i \sin b x} - e^{a x} \paren {\cos b x + i \sin b x}\) | subtracting $(4)$ from $(3)$ | |||||||||||||
\(\ds \) | \(=\) | \(\ds 2 e^{a x} \sin b x\) |
|
|||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {y_b - y_a} 2\) | \(=\) | \(\ds e^{a x} \sin b x\) |
Let:
\(\ds y_1\) | \(=\) | \(\ds \frac {y_a + y_b} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} \cos b x\) | ||||||||||||
\(\ds y_2\) | \(=\) | \(\ds \frac {y_b - y_a} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{a x} \sin b x\) |
We have that:
\(\ds \frac {y_1} {y_2}\) | \(=\) | \(\ds \frac {e^{a x} \cos b x} {e^{a x} \sin b x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cot b x\) |
As $\cot b x$ is not zero for all $x$, $y_1$ and $y_2$ are linearly independent.
From Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE:
- $y_1 = \dfrac {y_a + y_b} 2$
- $y_2 = \dfrac {y_b - y_b} 2$
are both particular solutions to $(1)$.
It follows from Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution that:
- $y = C_1 e^{a x} \cos b x + C_2 e^{a x} \sin b x$
or:
- $y = e^{a x} \paren {C_1 \cos b x + C_2 \sin b x}$
is the general solution to $(1)$.
$\blacksquare$
Sources
- 1958: G.E.H. Reuter: Elementary Differential Equations & Operators ... (previous) ... (next): Chapter $1$: Linear Differential Equations with Constant Coefficients: $\S 2$. The second order equation: $\S 2.1$ The reduced equation
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 18$: Basic Differential Equations and Solutions: $18.7$: Linear, homogeneous second order equation
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.17$: The Homogeneous Equation with Constant Coefficients
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): differential equation: differential equations of the second order: $(3)$ Linear equations with constant coefficients of the form $a \dfrac {\d^2 y} {\d x^2} + b \dfrac {\d y} {\d x} + c y = 0$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): differential equation: differential equations of the second order: $(3)$ Linear equations with constant coefficients of the form $a \dfrac {\d^2 y} {\d x^2} + b \dfrac {\d y} {\d x} + c y = 0$