Difference of Complex Number with Conjugate
Jump to navigation
Jump to search
Theorem
Let $z \in \C$ be a complex number.
Let $\overline z$ be the complex conjugate of $z$.
Let $\map \Im z$ be the imaginary part of $z$.
Then
- $z - \overline z = 2 i \, \map \Im z$
Proof
Let $z = x + i y$.
Then:
\(\ds z - \overline z\) | \(=\) | \(\ds \paren {x + i y} - \paren {x - i y}\) | Definition of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds x + i y - x + i y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 i y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 i \, \map \Im z\) | Definition of Imaginary Part |
$\blacksquare$
Also defined as
This result is also reported as:
- $\map \Im z = \dfrac {z - \overline z} {2 i}$
Sources
- 1957: E.G. Phillips: Functions of a Complex Variable (8th ed.) ... (previous) ... (next): Chapter $\text I$: Functions of a Complex Variable: $\S 2$. Conjugate Complex Numbers
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Fundamental Operations with Complex Numbers: $58 \ \text{(b)}$
- 1990: H.A. Priestley: Introduction to Complex Analysis (revised ed.) ... (previous) ... (next): $1$ The complex plane: Complex numbers $\S 1.3$ Complex conjugation: $(2)$