Complex Modulus equals Complex Modulus of Conjugate
Jump to navigation
Jump to search
Theorem
Let $z \in \C$ be a complex number.
Let $\overline z$ denote the complex conjugate of $z$.
Let $\cmod z$ denote the modulus of $z$.
Then:
- $\cmod z = \cmod {\overline z}$
Proof
Let $z = a + b i$.
Then:
\(\ds \cmod z\) | \(=\) | \(\ds \cmod {a + b i}\) | Definition of $z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {a^2 + b^2}\) | Definition of Complex Modulus |
and:
\(\ds \cmod {\overline z}\) | \(=\) | \(\ds \cmod {\overline {a + b i} }\) | Definition of $z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {a - b i}\) | Definition of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {a + \paren {- b} i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {a^2 + \paren {- b}^2}\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {a^2 + b^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z\) |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.7$ Complex Numbers and Functions: Complex Conjugate of $z$: $3.7.8$
- 1990: H.A. Priestley: Introduction to Complex Analysis (revised ed.) ... (previous) ... (next): $1$ The complex plane: Complex numbers $\S 1.3$ Complex conjugation: $(3)$