Digamma Function of One Half

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {\dfrac 1 2} = -\gamma - 2 \ln 2$

where:

$\psi$ denotes the digamma function
$\gamma$ denotes the Euler-Mascheroni constant.


Proof 1

\(\ds \map \psi {\frac 1 2}\) \(=\) \(\ds -\gamma - \ln 4 - \frac \pi 2 \map \cot {\frac 1 2 \pi} + 2 \sum_{n \mathop = 1}^0 \map \cos {\frac {2 \pi n} 2} \map \ln {\map \sin {\frac {\pi n} 2} }\) Gauss's Digamma Theorem
\(\ds \) \(=\) \(\ds -\gamma - \ln 4\) Cotangent of Right Angle, noting also that the summation is an empty sum
\(\ds \) \(=\) \(\ds -\gamma - 2 \ln 2\) Logarithm of Power

$\blacksquare$


Proof 2

\(\ds \sum_{k \mathop = 1}^{n - 1} \map \psi {\frac k n}\) \(=\) \(\ds -\paren {n - 1} \gamma - n \ln n\) Digamma Additive Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^{2 - 1} \map \psi {\frac k 2}\) \(=\) \(\ds -\paren {2 - 1} \gamma - 2 \ln 2\)
\(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 2}\) \(=\) \(\ds -\gamma - 2 \ln 2\)

$\blacksquare$