Dilogarithm of Minus Golden Mean

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\Li_2} {-\phi} = -\dfrac 3 5 \map \zeta 2 - \paren {\map \ln \phi}^2$


where:

$\map {\Li_2} x$ is the dilogarithm function of $x$
$\map \zeta 2$ is the Riemann $\zeta$ function of $2$
$\phi$ denotes the golden mean.


Proof

We now note:

\(\ds \map {\Li_2} {-z} + \map {\Li_2} {-\dfrac 1 z}\) \(=\) \(\ds -\map \zeta 2 - \dfrac 1 2 \map {\ln^2} z\) Dilogarithm of Minus Z Plus Dilogarithm of Minus Reciprocal of Z
\(\ds \leadsto \ \ \) \(\ds \map {\Li_2} {-\frac 1 \phi} + \map {\Li_2} {-\dfrac 1 {\frac 1 \phi} }\) \(=\) \(\ds -\map \zeta 2 - \dfrac 1 2 \map {\ln^2} {\frac 1 \phi}\) setting $z := \dfrac 1 \phi$
\(\ds \leadsto \ \ \) \(\ds \map {\Li_2} {-\frac 1 \phi} + \map {\Li_2} {-\phi}\) \(=\) \(\ds -\map \zeta 2 - \dfrac 1 2 \paren {\map \ln 1 - \map \ln \phi}^2\) Difference of Logarithms
\(\ds \leadsto \ \ \) \(\ds \map {\Li_2} {-\frac 1 \phi} + \map {\Li_2} {-\phi}\) \(=\) \(\ds -\map \zeta 2 - \dfrac 1 2 \map {\ln^2} \phi\) Natural Logarithm of 1 is 0
\(\ds \leadsto \ \ \) \(\ds \paren {-\dfrac 2 5 \map \zeta 2 + \dfrac 1 2 \paren {\map \ln \phi}^2 } + \map {\Li_2} {-\phi}\) \(=\) \(\ds -\map \zeta 2 - \dfrac 1 2 \map {\ln^2} \phi\) Dilogarithm of Minus Reciprocal of Golden Mean
\(\ds \leadsto \ \ \) \(\ds \map {\Li_2} {-\phi}\) \(=\) \(\ds -\dfrac 3 5 \map \zeta 2 - \paren {\map \ln \phi}^2\) rearranging

$\blacksquare$


Sources