Dirichlet Convolution Preserves Multiplicativity

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f, g: \N \to \C$ be multiplicative arithmetic functions.


Then their Dirichlet convolution $f * g$ is again multiplicative.


General Result

Let $S \subset \N$ be a set of natural numbers with the property:

$m n \in S, \map \gcd {m, n} = 1 \implies m, n \in S$

Define:

$\map {\paren {f*_S g} } n = \ds \sum_{\substack {d \mathop \divides n \\ d \mathop \in S} } \map f d \map g {n / d}$


Then $f*_S g$ is multiplicative.


Proof

Let $m, n$ be coprime integers.

By definition of multiplicative functions, we have:

$(1): \quad \map f {m n} = \map f m \map f n$
$(2): \quad \map g {m n} = \map g m \map g n$
\(\ds \map {\paren {f * g} } {m n}\) \(=\) \(\ds \sum_{d \mathop \divides m n} \map f d \map g {\frac {m n} d}\) Definition of Dirichlet Convolution
\(\ds \) \(=\) \(\ds \sum_{\substack {r \mathop \divides m \\ s \mathop \divides n} } \map f {r s} \map g {\frac m r \frac n s}\) Divisors of Product of Coprime Integers
\(\ds \) \(=\) \(\ds \sum_{\substack {r \mathop \divides m \\ s \mathop \divides n} } \map f r \map f s \map g {\frac m r} \map g {\frac n s}\) $f, g$ are multiplicative
\(\ds \) \(=\) \(\ds \paren {\sum_{r \mathop \divides m} \map f r \map g {\frac m r} } \paren {\sum_{s \mathop \divides n} \map f s \map g {\frac n s} }\)
\(\ds \) \(=\) \(\ds \map {\paren {f * g} } m \times \map {\paren {f * g} } n\) Definition of Dirichlet Convolution

$\blacksquare$


Also see