Disjunction in terms of NOR
Jump to navigation
Jump to search
Theorem
- $p \lor q \dashv \vdash \paren {p \downarrow q} \downarrow \paren {p \downarrow q}$
where $\lor$ denotes logical disjunction and $\downarrow$ denotes logical NOR.
Proof
\(\ds p \lor q\) | \(\dashv \vdash\) | \(\ds \neg \neg \paren {p \lor q}\) | Double Negation | |||||||||||
\(\ds \) | \(\dashv \vdash\) | \(\ds \neg \paren {p \downarrow q}\) | Definition of Logical NOR | |||||||||||
\(\ds \) | \(\dashv \vdash\) | \(\ds \paren {p \downarrow q} \downarrow \paren {p \downarrow q}\) | NOR with Equal Arguments |
$\blacksquare$