Divisor Count of 8128

From ProofWiki
Jump to navigation Jump to search

Example of Use of Divisor Count Function

$\map {\sigma_0} {8128} = 10$

where $\sigma_0$ denotes the divisor count function.


Proof

From Divisor Count Function from Prime Decomposition:

$\ds \map {\sigma_0} n = \prod_{j \mathop = 1}^r \paren {k_j + 1}$

where:

$r$ denotes the number of distinct prime factors in the prime decomposition of $n$
$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$.


We have that:

$8128 = 2^6 \times 127$

Thus:

\(\ds \map {\sigma_0} {8128}\) \(=\) \(\ds \map {\sigma_0} {2^6 \times 127^1}\)
\(\ds \) \(=\) \(\ds \paren {6 + 1} \paren {1 + 1}\)
\(\ds \) \(=\) \(\ds 14\)


The divisors of $496$ can be enumerated as:

$1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 8128$

This sequence is A133024 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).

$\blacksquare$