Divisor Divides Multiple/Proof 1
Jump to navigation
Jump to search
Theorem
Let $a, b$ be integers.
Let:
- $a \divides b$
where $\divides$ denotes divisibility.
Then:
- $\forall c \in \Z: a \divides b c$
Proof
Let $a \divides b$.
From Integer Divides Zero:
- $a \divides 0$
Thus $a$ is a common divisor of $b$ and $0$.
From Common Divisor Divides Integer Combination:
- $\forall p, q \in \Z: a \divides \paren {p \cdot b + q \cdot 0}$
Putting $p = c$ and $q = 1$ (for example):
- $a \divides \paren {c b + 0}$
Hence the result.
$\blacksquare$