Divisor of Integer/Examples/3 divides 2^n + (-1)^(n+1)

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer such that $n \ge 1$.

Then:

$3 \divides 2^n + \paren {-1}^{n + 1}$

where $\divides$ indicates divisibility .


Proof

The proof proceeds by induction.

For all $n \in \Z_{\ge 1}$, let $\map P n$ be the proposition:

$3 \divides 2^n + \paren {-1}^{n + 1}$


Basis for the Induction

$\map P 1$ is the case:

\(\ds 2^1 + \paren {-1}^2\) \(=\) \(\ds 2 + 3\)
\(\ds \) \(=\) \(\ds 3\)
\(\ds \leadsto \ \ \) \(\ds 3\) \(\divides\) \(\ds 2^1 + \paren {-1}^2\)

Thus $\map P 1$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is the induction hypothesis:

$3 \divides 2^k + \paren {-1}^{k + 1}$


from which it is to be shown that:

$3 \divides 2^{k + 1} + \paren {-1}^{k + 2}$


Induction Step

This is the induction step:

Suppose $k$ is integer.

Then $k + 1$ is odd, and:

\(\ds 2^{k + 1} + \paren {-1}^{k + 2}\) \(=\) \(\ds 2^k \times 2 + \paren {-1}^k \times \paren{-1}\)
\(\ds \) \(=\) \(\ds \paren {2^k - 1 + 1} \times 2 + \paren {-1}^{k + 2}\)
\(\ds \) \(=\) \(\ds \paren {2^k + \paren {-1}^{k + 1} + 1} \times 2 + 1\)
\(\ds \) \(=\) \(\ds \paren {2^k + \paren {-1}^{k + 1} } \times 2 + 2 + 1\)
\(\ds \) \(=\) \(\ds 3 r \times 2 + 3\) where $3 r = 2^k + \paren {-1}^{k + 1}$: by the induction hypothesis: $3 \divides 2^k + \paren {-1}^{k + 1}$
\(\ds \) \(=\) \(\ds 3 \paren {2 r + 1}\)
\(\ds \leadsto \ \ \) \(\ds 3\) \(\divides\) \(\ds 2^{k + 1} + \paren {-1}^{k + 2}\) Definition of Divisor of Integer


Similarly suppose $k$ is odd.

Then $k + 1$ is integer, and:

\(\ds 2^{k + 1} + \paren {-1}^{k + 2}\) \(=\) \(\ds 2^k \times 2 + \paren {-1}^k \times \paren{-1}\)
\(\ds \) \(=\) \(\ds \paren {2^k - 1 + 1} \times 2 + \paren {-1}^{k + 2}\)
\(\ds \) \(=\) \(\ds \paren {2^k + \paren {-1}^{k + 1} - 1} \times 2 - 1\)
\(\ds \) \(=\) \(\ds \paren {2^k + \paren {-1}^{k + 1} } \times 2 - 2 - 1\)
\(\ds \) \(=\) \(\ds 3 r \times 2 - 3\) where $3 r = 2^k + \paren {-1}^{k + 1}$: by the induction hypothesis: $3 \divides 2^k + \paren {-1}^{k + 1}$
\(\ds \) \(=\) \(\ds 3 \paren {2 r - 1}\)
\(\ds \leadsto \ \ \) \(\ds 3\) \(\divides\) \(\ds 2^{k + 1} + \paren {-1}^{k + 2}\) Definition of Divisor of Integer

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \Z_{\ge 1}: 3 \divides 2^n + \paren {-1}^{n + 1}$

$\blacksquare$


Sources