Dixon's Identity/Gaussian Binomial Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Formulation 1

For $l, m, n \in \Z_{\ge 0}$:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \dbinom {m - r - s} k_q \dbinom {n + r - s} {n - k}_q \dbinom {r + k} {m + n}_q = \dbinom r m_q \dbinom s n_q$

where $\dbinom r m_q$ denotes a Gaussian binomial coefficient


Formulation 2

For $l, m, n \in \Z_{\ge 0}$:

$\ds \sum_{k \mathop \in \Z} \paren {-1}^k \dbinom {l + m} {l + k}_q \dbinom {m + n} {m + k}_q \dbinom {n + l} {n + k}_q = \dfrac {\paren {l + m + n}!_q} {l!_q \, m!_q \, n!_q}$

where:

$\dbinom {l + m} {l + k}_q$ denotes a Gaussian binomial coefficient
$l!_q$ is defined as $\ds \prod_{k \mathop = 1}^n \paren {1 + q + \cdots + q^{k - 1} }$


Sources