Dual Operator is Well-Defined

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF \in \set {\R, \C}$.

Let $X$ and $Y$ be normed vector spaces over $\GF$.

Let $T : X \to Y$ be a bounded linear transformation.

Let $X^\ast$ and $Y^\ast$ be the normed duals of $X$ and $Y$ respectively.


Then the dual operator $T : Y^\ast \to X^\ast$ is well-defined.


Proof

We first show that $T^\ast$ is well-defined as a mapping $Y^\ast \to X^\ast$.

That is, we want to show that $T^\ast f \in X^\ast$ for each $f \in Y^\ast$.

For $x, y \in X$ and $\lambda, \mu \in \GF$, we have:

\(\ds \map {\paren {T^\ast f} } {\alpha x + \beta y}\) \(=\) \(\ds \map f {\map T {\alpha x + \beta y} }\)
\(\ds \) \(=\) \(\ds \map f {\alpha T x + \beta T y}\) Definition of Linear Transformation
\(\ds \) \(=\) \(\ds \alpha \map f {T x} + \beta \map f {T y}\) Definition of Linear Functional
\(\ds \) \(=\) \(\ds \alpha \map {\paren {T^\ast f} } x + \beta \map {\paren {T^\ast f} } y\)

So $T^\ast f$ is a linear functional.

We show that $T^\ast f$ is bounded.

For each $x \in X$, we have:

\(\ds \cmod {\map {\paren {T^\ast f} } x}\) \(=\) \(\ds \cmod {\map f {T x} }\)
\(\ds \) \(\le\) \(\ds \norm f_{Y^\ast} \norm {T x}_Y\) Fundamental Property of Norm on Bounded Linear Functional
\(\ds \) \(\le\) \(\ds \norm f_{Y^\ast} \norm T_{\map B {X, Y} } \norm x_X\) Fundamental Property of Norm on Bounded Linear Transformation

So $T^\ast f$ is bounded.

$\blacksquare$


Sources