Elementary Row Operations as Matrix Multiplications
Theorem
Let $e$ be an elementary row operation.
Let $\mathbf E$ be the elementary row matrix of order $m$ defined as:
- $\mathbf E = \map e {\mathbf I}$
where $\mathbf I$ is the unit matrix.
Then for every $m \times n$ matrix $\mathbf A$:
- $\map e {\mathbf A} = \mathbf {E A}$
where $\mathbf {E A}$ denotes the conventional matrix product.
Corollary
Let $\mathbf X$ and $\mathbf Y$ be two $m \times n$ matrices that differ by exactly one elementary row operation.
Then there exists an elementary row matrix of order $m$ such that:
- $\mathbf {E X} = \mathbf Y$
Proof
Let $s, t \in \closedint 1 m$ such that $s \ne t$.
Case $1$
Let $e$ be the elementary row operation $r_s \to \lambda r_s$:
- $E_{ik} = \begin{cases} \delta_{ik} & : i \ne s \\ \lambda \delta_{ik} & : i = s \end{cases}$
where $\delta$ denotes the Kronecker delta.
Then:
\(\ds \sqbrk {E A}_{i j}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^m E_{i k} A_{k j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {cases} A_{i j} & : i \ne r \\ \lambda A_{i j} & : i = r \end {cases}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mathbf {E A}\) | \(=\) | \(\ds \map e {\mathbf A}\) |
$\Box$
Case $2$
Let $e$ be the elementary row operation $r_s \to r_s + \lambda r_t$:
- $E_{i k} = \begin {cases} \delta_{i k} & : i \ne s \\ \delta_{s k} + \lambda \delta_{t k} & : i = s \end {cases}$
where $\delta$ denotes the Kronecker delta.
Then:
\(\ds \sqbrk {E A}_{i j}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^m E_{i k} A_{k j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {cases} A_{i j} & : i \ne s \\ A_{i j} + \lambda A_{t j} & : i = s \end {cases}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mathbf {E A}\) | \(=\) | \(\ds \map e {\mathbf A}\) |
$\Box$
Case $3$
Let $e$ be the elementary row operation $r_s \leftrightarrow r_t$:
By Exchange of Rows as Sequence of Other Elementary Row Operations, this elementary row operation can be expressed as:
- $\map {e_1 e_2 e_3 e_4} {\mathbf A} = \map e {\mathbf A}$
where the $e_i$ are elementary row operations of the other two types.
For each $e_i$, let $\mathbf E_i = \map {e_i} {\mathbf I}$.
Then:
\(\ds \map e {\mathbf A}\) | \(=\) | \(\ds \map {e_1 e_2 e_3 e_4} {\mathbf A}\) | Definition of $e$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf E_1 \mathbf E_2 \mathbf E_3 \mathbf E_4 \mathbf A\) | Cases $1$ and $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf E_1 \mathbf E_2 \mathbf E_3 \map {e_4} {\mathbf I} \mathbf A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf E_1 \mathbf E_2 \map {e_3 e_4} {\mathbf I} \mathbf A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf E_1 \map {e_2 e_3 e_4} {\mathbf I} \mathbf A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {e_1 e_2 e_3 e_4} {\mathbf I} \mathbf A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map e {\mathbf I} \mathbf A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf {E A}\) |
$\blacksquare$
Also see
Sources
- 1971: Kenneth Hoffman and Ray Kunze: Linear Algebra (2nd ed.)
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): elementary matrix