Equal Set Differences iff Equal Intersections/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$R \setminus S = R \setminus T \iff R \cap S = R \cap T$


Proof

\(\ds R \setminus S\) \(=\) \(\ds R \setminus T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \set {x \in R: x \notin S}\) \(=\) \(\ds \set {x \in R: x \notin T}\) Definition of Set Difference
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x \in R: \, \) \(\ds x \notin S\) \(\iff\) \(\ds x \notin T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x \in R: \, \) \(\ds x \in S\) \(\iff\) \(\ds x \in T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \set {\paren {x \in R} \land \paren {x \in S} }\) \(=\) \(\ds \set {\paren {x \in R} \land \paren {x \in T} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds R \cap S\) \(=\) \(\ds R \cap T\) Definition of Set Intersection

$\blacksquare$