Equation of Cissoid of Diocles/Parametric Form

From ProofWiki
Jump to navigation Jump to search

Theorem

The cissoid of Diocles can be defined by the parametric equation:

$\begin {cases} x = 2 a \sin^2 \theta \\ y = \dfrac {2 a \sin^3 \theta} {\cos \theta} \end {cases}$


Proof

\(\ds r\) \(=\) \(\ds 2 a \sin \theta \tan \theta\) Equation of Cissoid of Diocles: Polar Form
\(\ds \leadsto \ \ \) \(\ds r \cos \theta\) \(=\) \(\ds 2 a \cos \sin \theta \paren {\dfrac {\sin \theta} {\cos \theta} }\)
\(\ds r \sin \theta\) \(=\) \(\ds 2 a \sin \theta \sin \theta \paren {\dfrac {\sin \theta} {\cos \theta} }\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 2 a \sin^2 \theta\) Conversion between Cartesian and Polar Coordinates in Plane
\(\ds y\) \(=\) \(\ds \dfrac {2 a \sin^3 \theta} {\cos \theta}\)

$\blacksquare$


Also see


Sources