Equation of Cissoid of Diocles/Parametric Form
Jump to navigation
Jump to search
Theorem
The cissoid of Diocles can be defined by the parametric equation:
- $\begin {cases} x = 2 a \sin^2 \theta \\ y = \dfrac {2 a \sin^3 \theta} {\cos \theta} \end {cases}$
Proof
\(\ds r\) | \(=\) | \(\ds 2 a \sin \theta \tan \theta\) | Equation of Cissoid of Diocles: Polar Form | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds r \cos \theta\) | \(=\) | \(\ds 2 a \cos \sin \theta \paren {\dfrac {\sin \theta} {\cos \theta} }\) | |||||||||||
\(\ds r \sin \theta\) | \(=\) | \(\ds 2 a \sin \theta \sin \theta \paren {\dfrac {\sin \theta} {\cos \theta} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds 2 a \sin^2 \theta\) | Conversion between Cartesian and Polar Coordinates in Plane | ||||||||||
\(\ds y\) | \(=\) | \(\ds \dfrac {2 a \sin^3 \theta} {\cos \theta}\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 11$: Special Plane Curves: Cissoid of Diocles: $11.34$
- Weisstein, Eric W. "Cissoid of Diocles." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CissoidofDiocles.html