Equivalence of Definitions of Associated Prime of Module

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a commutative ring with unity.

Let $M$ be a module over $A$.

Let $\mathfrak p$ be a prime ideal in $A$.

The following definitions of the concept of Associated Prime of Module are equivalent:

Definition 1

$\mathfrak p$ is an associated prime of $M$ if and only if:

$\exists x \in M : \map {\operatorname {Ann}_A} x = \mathfrak p$

where $\map {\operatorname {Ann}_A} x$ is the annihilator of $x$.

Definition 2

$\mathfrak p$ is an associated prime of $M$ if and only if:

$M$ contains a submodule which is isomorphic to the quotient ring $A/\mathfrak p$.


Proof

Definition 1 implies Definition 2

Suppose that $x \in M$ satisfies:

$\map {\operatorname {Ann}_A} x = \mathfrak p$

Define a submodule of $M$ by:

$N := \set { a x : a \in A }$

Define a module homomorphism $\phi : A \to N$ by:

$a \mapsto a x$

Then the kernel of $\phi$ is:

$\map \ker \phi = \map {\operatorname {Ann}_A} x = \mathfrak p$

By First Isomorphism Theorem:

$N \cong A / \mathfrak p$

$\Box$

Definition 2 implies Definition 1

Let $N \subseteq M$ be a submodule.

Suppose that there is an isomorphism:

$\psi : A / \mathfrak p \to N$

Let $a_0 \in A \setminus \mathfrak p$.

Let:

$x := \map \psi {a_0 + \mathfrak p}$

We claim that:

$\map {\operatorname {Ann}_A} x = \mathfrak p$

Indeed:

\(\ds a\) \(\in\) \(\ds \map {\operatorname {Ann}_A} x\)
\(\ds \leadstoandfrom \ \ \) \(\ds 0\) \(=\) \(\ds a x\) Definition of Annihilator
\(\ds \) \(=\) \(\ds a \map \psi {a_0 + \mathfrak p}\)
\(\ds \) \(=\) \(\ds \map \psi {a a_0 + \mathfrak p}\)
\(\ds \leadstoandfrom \ \ \) \(\ds a a_0 + \mathfrak p\) \(=\) \(\ds 0 + \mathfrak p\) since $\psi$ is bijective
\(\ds \leadstoandfrom \ \ \) \(\ds a a_0\) \(\in\) \(\ds \mathfrak p\) Definition of Quotient Ring
\(\ds \leadstoandfrom \ \ \) \(\ds a\) \(\in\) \(\ds \mathfrak p\) since $\mathfrak p$ is prime and $a_0 \not \in \mathfrak p$

$\blacksquare$