Equivalence of Definitions of Beta Function
Jump to navigation
Jump to search
Theorem
The following definitions of the concept of Beta Function are equivalent:
For $\map \Re x, \map \Re y > 0$:
Definition 1
- $\ds \map \Beta {x, y} := \int_{\mathop \to 0}^{\mathop \to 1} t^{x - 1} \paren {1 - t}^{y - 1} \rd t$
Definition 2
- $\ds \map \Beta {x, y} := 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta$
Definition 3
- $\map \Beta {x, y} := \dfrac {\map \Gamma x \map \Gamma y} {\map \Gamma {x + y} }$
where $\Gamma$ is the gamma function.
Proof
Definition 1 is equivalent to Definition 2
\(\ds \map \Beta {x, y}\) | \(=\) | \(\ds \int_0^1 t^{x - 1} \paren {1 - t}^{y - 1} \rd t\) | Definition 1 of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 2} \paren {\cos \theta}^{2 y - 2} 2 \sin \theta \cos \theta \rd \theta\) | Substitute $t = \sin^2 \theta$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta\) | Definition 2 of Beta Function |
$\Box$
Definition 2 is equivalent to Definition 3
By definition of Gamma function:
- $\ds \map \Gamma x \, \map \Gamma y = \int_0^\infty t^{x - 1} e^{-t} \rd t \int_0^\infty s^{y - 1} e^{-s} \rd s$
Substitute $t = u^2$ and $s = v^2$:
\(\ds \map \Gamma x \, \map \Gamma y\) | \(=\) | \(\ds 4 \int_0^\infty u^{2 x - 1} e^{-u^2} \rd u \int_0^\infty v^{2 y - 1} e^{-v^2} \rd v\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_0^\infty \int_0^\infty u^{2 x - 1} v^{2 y - 1} e^{-\paren {u^2 + v^2} } \rd u \rd v\) | Fubini's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_0^\infty \int_0^{\pi / 2} r^{2 x - 1} \paren {\sin \theta}^{2 x - 1} r^{2 y - 1} \paren {\cos \theta}^{2 y - 1} e^{-r^2} r \rd \theta \rd r\) | Substitute $v = r \cos \theta$ and $u = r \sin \theta$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_0^\infty r^{2 x + 2 y - 2} e^{-r^2} r \rd r \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta\) | Fubini's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int_0^\infty u^{x + y - 1} e^{-u} \rd u \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta\) | Substitute $u = r^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \, \map \Gamma {x + y} \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta\) | Definition of Gamma Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(\) | \(\ds \frac {\map \Gamma x \, \map \Gamma y} {\map \Gamma {x + y} }\) | Definition 3 of Beta Function | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 \int_0^{\pi / 2} \paren {\sin \theta}^{2 x - 1} \paren {\cos \theta}^{2 y - 1} \rd \theta\) | Definition 2 of Beta Function |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Trigonometric Functions: $15.32$